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This paper [1] discussed an interesting method which employs the wave propagation
approach to estimate the natural frequencies of closed circular cylindrical shells for various
boundary conditions. Based on Love's motion equations, this method combines an exact
frequency}wavenumber characteristics formula with appropriate beam functions in the
axial direction to give more accurate predictions of natural frequencies of circular
cylindrical shells. However, the advantage of this method over other major methods
developed in the past was not fully discussed in this paper. A more detailed analysis of the
method using the wave approach to solve Love's equations with regard to its validity and
accuracy for simply supported, free}free and clamped}clamped boundary conditions was
published by Wang and Lai [2, 3]. The purpose of this note is to highlight the conditions
under which solutions obtained by solving Love's equations using the wave approach and
beam functions will be accurate for thin circular cylindrical shells. In particular, we would
like to discuss the condition under which the assumptions made in Love's equation are valid
and the condition under which errors introduced by the use of beam functions become
signi"cant.

It is well known that Love's equations are for thin shells of which the thickness h is much
less than its radius a and in which the shear de#ection is small, so that the in#uence of
rotatory inertia could be neglected. According to Soedel [4], the shear deformation
should not be neglected for cases where the thickness dimension approaches a quarter
wavelength of a modal bending wave. Therefore, the accuracy of the solutions obtained by
solving Love's motion equations using the wave approach depends upon whether the
assumptions made for Love's motion equations are valid. Figures 1 and 2 compare
the frequency}wavenumber relationship obtained from Love's motion equations using
the wave approach with that obtained by the "nite-element method (FEM) [2] for a/h"20
and a/h"5 respectively. Here, the results are expressed in terms of non-dimensional
parameters X and k

z
a, where k

z
is the wavenumber in the axial direction. The

non-dimensional frequency parameter X is obtained by normalizing the frequency u with

the ring angular frequency, u
r
"(1/a)JE/o, where E is Young's modulus and o is the

density of the material. The FEM results were obtained from calculations made for
cylindrical shell models with two radius/thickness ratios (a/h"5, 20) and three di!erent
lengths (l"0)2, 0)5 and 1 m). Only the results for simply supported shells are shown here
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Figure 1. Comparison of the frequency}wavenumber relationship between the wave approach and FEM for
a/h"20: **, wave approach; s, FEM. (a) n"1, (b) n"2, (c) n"3.
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because the frequency}wavenumber relationship obtained from Love's equations with the
wave approach using the beam functions is exact [2]. It can be seen from Figure 1 that for
circular cylindrical shells with a/h"20, the agreement between the results obtained by the
wave approach and FEM is excellent within the range k

z
a(3)5 for the circumferential

mode order n"1, 2 and 3. This is not surprising because the thin shell assumption is

satis"ed with kh(0)23. Here, k"Jk2
z
#k2h , kh"n/a is the wavenumber in the

circumferential direction, and kh"0)23 corresponds to k
z
a"3)5 and n"3. On the other



Figure 2. Comparison of the frequency}wavenumber relationship between the wave approach and FEM for
a/h"5: **, wave approach; s, FEM. (a) n"1, (b) n"2, (c) n"3.
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hand, for shells with a/h"5, however, FEM results are slightly lower than the wave
approach results within the range k

z
a(3)5, especially as the circumferential mode order

n increases (Figure 2). This is because for small a/h and higher order modes, the shear
de#ection and the rotatory inertia of the shell, which are not included in Love's equations,
reduce the natural frequencies. Figure 2(c) indicates that for k

z
a"3)5, n"3 (corresponding

to kh"0)92), the di!erence between the results obtained by Love's equations and FEM is
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(7%. Thus, the limited results presented in Figures 1 and 2 appear to suggest that the
condition kh(1 may generally guarantee that the frequency}wavenumber relationship
obtained from Love's motion equations is applicable with an error of (10%, with more
accurate results at small kh.

When using the beam functions, errors may be introduced in the results due to neglecting
the coupling of the vibration between the axial and the circumferential direction. The
e!ects of such coupling are generally less important for long thin shells and for higher
order modes. Figure 3 compares the natural frequencies of &&short'' (0)2 m long)
circular cylindrical shells with both ends clamped calculated by the wave approach
using beam functions and the FEM [2]. It can be seen that discrepancy is substantial
for the shell with a/h"5. Even for the shell with a/h"20, the error is still large for
lower order modes. So generally speaking, unless both ends of the shell are simply
supported, the wave approach using beam functions is only good for relatively long
cylindrical shells.

For very thin, long shells (a/h'300), Soedel [5] obtained the formula (1) by solving
Donnell-Mushtari-Vlasov motion equations for simply-supported boundary conditions.
Donnell-Mushtari-Vlasov motion equations were based on Love's equations by
introducing zero Gaussian curvature as an additional simpli"cation. Equation (1) is much
simpler and more straightforward to use than those of the wave approach [2]. Soedel [5]
suggested that this equation can be used together with appropriate beam functions for the
Figure 3. Comparison of the natural frequencies of a clamped}clamped circular cylindrical shells obtained by
the wave approach and FEM: **, wave approach; s, FEM. (a) a/h"5, l"0)2 m, (b) a/h"20, l"0)2 m.
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estimation of natural frequencies of closed circular cylindrical shells with di!erent boundary
conditions. This conjecture is indeed supported by the detailed analysis of the
frequency-wavenumber relationship using the wave approach [2]
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It should be mentioned that references [2, 4] both suggested that the wave approach might
only be applicable for the #exural vibration of cylindrical shells. For the other two in-plane
vibrations, it is not clear yet whether the approach is e!ective or not.
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